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bstract

he influence of measurement uncertainties (MU) on the determination of the parameters of a distribution function has been analyzed using a
onte Carlo simulation technique on the example of the Weibull distribution, which describes the strength of brittle materials. It is shown that in

he parameter range which is relevant for strength testing of brittle materials (e.g. ceramics) very high precision measurements are necessary if the
eibull modulus of the parent distribution is m ≥ 20. In that case the MU should be lower than ±2% of the measured value to obtain the same

onfidence level compared to the ideal case (MU = 0). Otherwise a significant underestimation of m becomes very probable. However, if m ≤ 10,

ven relatively large MU (up to ±10%) are tolerable. In summary, the precision of the measurements is acceptable as long as the width of the error
istribution be much smaller than the width of the parent distribution.

2011 Elsevier Ltd. All rights reserved.
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. Introduction

In many cases a physical property is not simply given by
single value, but has to be described by a distribution func-

ion. This distribution function is determined by many individual
xperiments. If the type of the distribution function is known,
he number of experiments can be reduced, because only a few
arameters (in many cases a scale and a shape parameter) and not
he distribution function in each detail must be determined. In the
ase of the Gaussian and Poisson distributions, the parameters
re the mean value and the standard deviation. As for the case
f the Weibull distribution, the parameters are the characteristic
trength and the Weibull modulus.

It is obvious that even the determination of a few param-
ters can cause a significant effort. If, for example, we select
ve random specimens (the sample size N = 5) to determine a

aussian distribution, all the values of these five specimens can

randomly) be higher or lower than the mean of the distribu-
ion. As a consequence, both an incorrect mean and width of the

∗ Corresponding author.
E-mail address: raul.bermejo@unileoben.ac.at (R. Bermejo).

m
o
t
e
r
i
s

955-2219/$ – see front matter © 2011 Elsevier Ltd. All rights reserved.
oi:10.1016/j.jeurceramsoc.2011.09.008
istribution might be determined. It is also important to realize
hat, in almost any case, the properties of a sample are different
o the properties of the parent distribution. Indeed the deviation
ends to be smaller if the sample size increases (if, in the above
xample, the sample size were N = 1000, it would be much more
nlikely that all properties of these 1000 specimens were higher
han the mean of the parent distribution as it may be the case for

= 5). The consequence of this behaviour is that the parameters
f a distribution cannot be precisely determined with any sam-
le. Nevertheless, it is possible to define confidence intervals.
or example a 90% confidence interval for the determination
f the size parameter means that the size parameter of the par-
nt distribution is, with a probability of 90%, within this range.
onfidence intervals in dependence of the sample size can be

ound in literature.1–3

The above analysis is made for the hypothetical case that no
easurement uncertainties (MU) occur. However, in the case

f real measurements, MU always exist. In this paper we want
o demonstrate how the determination of size and shape param-
ters of a distribution can be corrupted by MU. Namely, the

ange of the confidence interval and its confidence level become
ncorrect. The analysis is done on the example of strength mea-
urements of brittle materials and is relevant for the daily testing

http://www.sciencedirect.com/science/journal/09552219
dx.doi.org/10.1016/j.jeurceramsoc.2011.09.008
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ractice of ceramics. In this case the data are Weibull distributed
nd large MU may occur during testing. The results can quali-
atively be extended to any other distribution.

. Strength of brittle materials

The tensile strength of brittle materials (e.g. ceramics or
lasses) is determined by small defects, which are distributed
ithin the specimens or on their surface. The strength of a spec-

men is determined by the most critical flaw (which is, in general,
he largest one in the most highly stressed location). Its size dif-
ers from specimen to specimen. Therefore, the strength has to
e described by a distribution function, which reflects the size
istribution of flaws in the specimens. A wide flaw distribution
auses large inherent scatter of strength. A consequence is the
ize effect of strength.4–7 In large specimens, large flaws are
ore likely to occur than in small specimens and, therefore,

he mean strength of a set of large specimens is expected to be
ower than the mean strength of a set of small specimens. This
ehaviour is well described by the Weibull distribution:

= 1 − exp

[
− V

V0

(
σ

σ0

)m]
(1)

here F is the probability of failure, V is the specimen vol-
me, σ is the applied stress, V0 is a normalizing volume, σ0
s the characteristic strength (the scaling parameter) and m is
he Weibull modulus, which describes the scatter of the data
the shape parameter). Small values of m denote large scatter
n strength. Traditional ceramics typically have m values about

or lower. However, for modern technical ceramics m values
etween 10 and 20 and even higher have been reported.7,8

Strength measurement techniques for brittle materials may
uffer from large MU, which can bias the determination of the
eibull parameters (σ0 and m). For standard bending testing

i.e. ASTM C1161, EN-834-1) of specimens with dimensions
× 4 × 45 mm the MU have been analyzed in.9 They are
laimed to be less than ±2%. In many cases of practical rele-
ance, bending test specimens have to be cut out of components
the flaw population is related to the processing procedure). For
mall components the standardized specimen size may be too big
nd smaller specimens have to be used. Of course MU increase
ith decreasing specimen size.10,11 For instance, MU in bend-

ng specimens having a length of 15 mm may reach up to ±5%,
ven if all recommendations in standards are taken into account.

In many cases (e.g. if components are discs or plates or if
he in service loading is biaxial) strength testing is done under
iaxial conditions, e.g. using the ring on ring or the ball on
ing test.12 Here a clear full analysis of MU is missing. Indeed,
ome unevenness or roughness of specimen surfaces, e.g. when
esting “as-sintered” specimens or components, causes an unde-
ned load transfer. This may have a strong influence on the
pplied bending moments. Sliding friction occurs by pulling the

pecimen over the supporting ring during loading which is not
aken into account. The curvature of specimens can also influ-
nce the load transfer from specimen to specimen. Therefore
hese tests can be very imprecise. In the case of biaxial tests the

4

s
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U associated with the failure to align the supporting and load-
ng rings can reach 10%13 and these MU have to be considered
hen analyzing strength test results. In the ball-on-three-balls

est developed recently by some of the authors (a biaxial tensile
trength test) the MU is very low (±1% or less).14–16 This high
recision can be necessary to determine Weibull parameters of
ighly reliable materials, as it will be shown below.

. Monte Carlo simulations

In previous work of some of the authors a Monte Carlo
echnique to simulate Weibull distributions was developed. A

eibull distribution is characterized by the Weibull parameters
0 and m (for simplicity we select V = V0 in Eq. (1)). Thus, the
robability of failure, Fi of the test i can be simulated dividing
y a number between 0 and 1. The corresponding strength, σi,
an be read from Eq. (1). By repeating this procedure N-times
sample of N strength tests is generated. From this sample the
eibull parameters can be determined in the usual way described

n standards using the maximum likelihood method (see ASTM
239-9517 or EN-843-52). By comparing these (virtual) parame-
ers with the real ones (remember: the sample is always different
o the parent distribution) the confidence intervals corresponding
o the Weibull parameters as a function of N can be determined.3

In the actual study we started with a virtual Weibull dis-
ributed sample of N specimens, for a given σ0 and m. We select
0 = 1 for simplicity. We further assume that the MU (Xi) are
omogeneously distributed in an interval which is symmetrically
rranged around the characteristic strength (σ0) of the material
other distributions of MU, e.g. a Gaussian distribution, could
lso be assumed, but this would not change the trends of the
esults):

σi − XMU,max

σ0
,
σi + XMU,max

σ0

]
or [1 − xmax, 1 + xmax] (2)

here XMU,max and xmax are the largest possible absolute and
elative errors, respectively. We add, to each individual strength
alue σi of the virtual sample, an error, which is diced out of the
nterval given by Eq. (2). Then, the Weibull parameters of this
ew sample (i.e., σs and ms) are determined. They are the simu-
ated parameters, which correspond to the measured parameters
nd, in general, they differ from the original values. In order
o get a statistics concerning this difference, the procedure was
epeated several times (105 times in the actual case) for each set
f parameters (m and xmax).

For this study, parameters have been selected, which are typ-
cal for strength and strength testing of ceramic materials. Here
tandards recommend to use samples with N = 30 or larger (in
ractice they are not larger for cost reasons). Therefore the main
rends are analyzed for samples of that size. In general, the
arameters are varied as follows: m = {5, 10, 20, 30}, N = {5,
0, 30, 100} and xmax = {0%, 2%, 5%, 10%}.
. Results and discussion

Fig. 1 shows the results of 105 Monte Carlo simulations of
amples of size N = 30 diced out of a Weibull distribution with
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Fig. 1. Results of 105 Monte Carlo simulations of a Weibull distribution with σ0 = 1 MPa and m = 30 (a) for the Weibull modulus and (b) for the characteristic
s no MU
o urves
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trength. The sample size is N = 30. The full curves relate to simulations where
f MU is taken into account. The width of the 90% confidence interval for the c

0 = 1 MPa and m = 30 for several MU. Plotted is the relative fre-
uency of the simulated (measured) Weibull modulus (Fig. 1a)
nd the characteristic strength (Fig. 1b). The full lines refer to
he measurements where no MU occur and the broken lines to

easurements where MU are considered.
For the curves without MU (xmax = 0) the most frequent mea-

urement for the Weibull modulus is slightly larger than 30, but
he mean is approximately ms = 32, whereas the value of the par-
nt distribution is m = 30. The Weibull distribution function is
ot symmetrical and therefore the data determined on samples
for the characteristic strength as well as for the modulus) are
iased. Nevertheless, confidence intervals for the ms and σs can
e defined (the 90% confidence intervals are indicated by dou-
le arrows). The modulus and the characteristic strength of the
arent distribution are within the confidence interval.a

The broken lines refer to simulations, where the action of
U is taken into account. With increase of the MU (xmax) it is
ore probable to measure a lower Weibull modulus (ms < m),

nd a (slightly) higher characteristic strength (σs > σ0) than the
orresponding parameters of the parent distribution. Whereas
he effect on the determination of the modulus is high, the effect
n the characteristic strength is relatively weak. Therefore we
ill focus the following discussion on the modulus.
In Fig. 2 the measured values of the Weibull modulus (the

ean value and the 90% confidence interval) are plotted versus
he modulus of the parent distribution (m). As stated before, for
max = 0 (Fig. 2a), there is a chance that the mean modulus is
igher than the modulus of the parent distribution, but it is (for
ll values of the Weibull modulus) within the 90% confidence
nterval of the experimental data. For experiments with xmax > 0

Figs. 2b–d) the experimentally determined values of the mod-
lus become smaller than without MU. This effect is enhanced
ith increasing MU.

a In standards it is requested to correct measured values of the Weibull param-
ters by the “bias factor”, since – in the mean – the “measured” parameters
eviate from the real ones. Since the only correct statement is to say that the
eibull parameters of the parent distribution are – with the given probabilty

e.g. 90%) – within the corresponding confidence interval, the correction is in
his case not necessary.
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is assumed (xmax = 0). The other curves refer to simulations where the action
without MU are indicated by double arrows.

At xmax = 2% this effect is not very significant but it almost
alances the bias mentioned above. However, at xmax = 5% and
max = 10%, it causes significant deviations of the measured val-
es of the modulus from the real ones. This effect is even more
ronounced at higher m values. At xmax = 5% and m = 30 the
odulus of the parent distribution is just outside the 90% confi-

ence interval of the measured values (i.e. the probability that the
odulus of the parent distribution be within the experimentally

etermined confidence interval is only 5%) and for xmax = 10%
he same applies for m = 15. It is clear that the MU corrupt the
etermination of the Weibull modulus. The nominal confidence
nterval as calculated on the basis of the error free measurements
oes no longer fit to the true measured data including MU.

In Fig. 3 the probability (y-axis) that the Weibull modulus of
he parent distribution be within the nominal 90% confidence
nterval of the measurement is plotted versus the maximum rel-
tive error xmax (x-axis). The parameter in the curves is the
eibull modulus. To build up Fig. 3,the measured Weibull
odulus, ms, and its corresponding 90% confidence interval

ms,lower, ms,upper] have been calculated for every sample from
he parent distribution (biased by a given xmax). Then, it has
een checked whether m is within the measured interval. This
as been accounted for all 105 samples. According to the chosen
onfidence interval of 90%, it is clear that for xmax = 0 the 90% of
he samples measured (i.e. the 90% of the corresponding confi-
ence intervals) will contain the parent parameter m. Thus, there
s a 90% probability that the parent parameter m is within the
0% confidence interval of the measurement (this corresponds
o the starting point of all curves in Fig. 3). Now, for materials
ith a low modulus (m = 5), no significant influence of the MU
n the measurement can be appreciated in Fig. 3. This means that
0% of the ms, calculated from each of the 105 samples (biased
y a given MU), would contain the Weibull modulus of the par-
nt distribution with a 90% probability. However, for materials
ith higher modulus (e.g. m = 30), a significant decrease of the
uality of the measurement still occurs for small MU (e.g. at

= 5%). In this case, for instance, only 35% of the measured
max
amples will contain the modulus of the parent distribution with
“90% confidence interval”. In other words, in two of three sam-
les, the estimated Weibull modulus will not correspond to that
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ig. 2. Measured versus real Weibull modulus for samples of size N = 30 for e
he symbols refer to the mean value of the experimental data. Also shown are t

f the parent distribution. For materials with an even narrower
istribution (e.g. m = 100) and for xmax > 3%, the probability to
easure the modulus of the parent distribution is almost zero.
The above analysis has been made for samples with N = 30.

ndeed, the confidence intervals become wider if the sample size
ecreases and smaller if it increases, but this does not change

he trends discussed above. For example, for xmax = 10% and for

= 30, the mean value for ms results in 17, 16 or 15.6 for N = 10,

ig. 3. Plotted is the probability that the Weibull modulus of the parent distribu-
ion is within the nominal 90% confidence interval of the measurement versus
he maximum relative MU (xmax) for samples of size N = 30. Plotted data are
esults from Monte Carlo simulations. Parameter in the curves is the Weibull
odulus of the parent distribution.
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ents having a maximum relative MU of (a) 0%, (b) 2%, (c) 5% and (d) 10%.
% confidence intervals.

0 or 100, respectively. Of course the influence of MU is less
ignificant if the “measured” confidence intervals are wider.

In the experimental praxis MU are not always symmetrically
istributed around the measured value. Very often there is a
ystematic (positive or negative) error in the measurement. This
ase has also been analyzed with Monte Carlo simulations in the
arameter range defined above. Roughly speaking, a systematic
rror shifts the characteristic strength (the scale parameter) by
he mean of this error (XMU, max − XMU,min)/2. The influence on
he Weibull modulus (the shape parameter) is almost the same
s that of a symmetric MU distribution having the same width.
n fact, if the systematic error increases the measured strength,
he modulus increases, whereas if it decreases, the measured
trength is lower compared to the action of a symmetric error,
ut this effect is not significant.

. Conclusions

The influence of measurement uncertainties (MU) on the
etermination of the parameters of a distribution function has
een analyzed using a Monte Carlo simulation technique on the
asis of the Weibull distribution, which describes the strength

f brittle materials. The sample is always different to the par-
nt distribution. If the parameters of many (virtual) samples
re assessed, confidence intervals can be determined, which
eflect the probability of containing the parameters of the parent
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istribution. The larger the sample size, the smaller the confi-
ence interval, thus increasing the probability of containing the
arent parameter. However, in strength testing, the sample size is
lways relatively small, since the specimens cost is high. There-
ore the effect of the sampling on the “measured” parameters of
he distribution becomes highly relevant.

It follows that whereas the influence of MU on the size param-
ter (the characteristic strength) is relatively small (at least in the
nalyzed parameter range, which is typical for strength testing of
rittle materials), the effect on the shape parameter (the Weibull
odulus) may become very significant:
(i) For strength testing of brittle materials (ceramics) a high

recision is necessary if the material has a Weibul modulus of
≥ 20. Then the maximum relative MU should be smaller than

%. In bend testing, specimens longer than 30 mm are required.
or the case of conventional biaxial strength testing, where rel-
tive MU up to 10% can be expected, the width of the error
istribution may exceed the width of the measurement. There-
ore, the distribution of the measured parameters cannot be
etermined. In this case, methods such as the ball on three balls
est, where MU are less than 1%, are recommended.

(ii) For strength testing of conventional ceramic materials
aving a low Weibull modulus (m ≤ 10), even unprecise mea-
urement systems (with MU up to 10%) can, in principle, be
olerable for the correct determination of the strength distribu-
ion.
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